Муниципальное автономное общеобразовательное учреждение «Гимназия № 76»

УТВЕРЖДЕНО директор МАОУ «Гимназия №76» Е.В.Плотникова **‹**‹

Приказ № 345 от 29.08.2023г.

Рабочая программа учебного курса

по предмету русский язык «Сложные вопросы физики» для 10 а класса (количество часов в неделю – 1, год – 34)

Составитель: Морозова Анжелика Рюриковна, учитель физики высшей квалификационной категории

‹‹

Пояснительная записка

Одно из труднейших звеньев учебного процесса – научить учащихся решать сложные вопросы физики сложные задачи. Физическая задача – это ситуация, требующая от учащихся мыслительных и практических действий на основе законов и методов физики, направленных на овладение знаниями по физике и на развитие мышления. Хотя способы решения традиционных задач хорошо известны (логический (математический), экспериментальный, но организация деятельности учащихся по решению задач является одним из условий обеспечения глубоких и прочных знаний у учащихся. Учебные курсы по решению сложных вопросов физики в первую очередь призваны развивать содержание курса физики, у учащихся появляется реальная возможность при наличии данного курса получить подготовку, соответствующую профильному уровню изучения предмета, и подготовиться к сдаче ЕГЭ.

Учебный курс «Сложные вопросы физики » рассчитан на учащихся 10 классов общеобразовательных учреждений, где физика преподается на базовом и профильном уровне.

Данный курс рассчитан на преподавание в объеме **34 часа** (1 час в неделю на один год обучения 10 класс.)

Цель данного курса углубить и систематизировать знания учащихся 10 классов по физике путем решения разнообразных задач и вопросов, также способствовать их профессиональному определению.

Его основная направленность – подготовить учащихся к ЕГЭ с опорой на знания и умения учащихся, приобретенные при изучении физики в 7-9 классах, а также углублению знаний по темам при изучении курса физики в 10 классе. Занятия проводится 1 час в неделю в течение 2 полугодий (на один год обучения).

Цели учебного курса:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения сложных задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи курса:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Программа курса составлена с учетом государственного образовательного стандарта и содержанием основных программ курса физики профильной школы. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Для этого вся программа делится на несколько разделов. В программе выделены основные разделы школьного курса физики, в начале изучения которых с учащимися повторяются основные законы и формулы данного раздела. При подборе задач по каждому разделу можно использовать вычислительные, качественные, графические, экспериментальные задачи.

В 10 классе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. В начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики. При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену. При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности. В конце изучения основных тем

(«Кинематика и динамика», «Молекулярная физика», «Электродинамика») проводятся итоговые занятия в форме проверочных работ.

СОДЕРЖАНИЕ ОБУЧЕНИЯ 10 КЛАСС

Раздел 1. Правила и приемы решения физических задач

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

Раздел 2. Кинематика

Тема 1. Равномерное движение. Средняя скорость.

Прямолинейное равномерное движение и его характеристики: перемещение, путь. Графическое представление движения РД. Графический и координатный способы решения задач на РД. Алгоритм решения задач на расчет средней скорости движения.

Тема 2. Одномерное равнопеременное движение. Ускорение. Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении. Графическое представление РУД. Графический и координатный способы решения задач на РУД.

Раздел 3. Динамика и статика

Тема 1. Решение задач на основы динамики. Решение задач по алгоритму

на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела.

Тема 2.Движение под действием силы всемирного тяготения. Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников.

Тема 3.Условия равновесия тел. Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их решения.

Раздел 4. Законы сохранения

Тема 1.Импульс. Закон сохранения импульса. Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение.

Тема 2. Работа и энергия в механике. Закон изменения и сохранения механической энергии. Энергетический алгоритм решения задач на работу и мощность. Потенциальная и кинетическая энергия. Полная механическая энергия. Алгоритм решения задач на закон сохранения и превращение механической энергии несколькими способами. Решение задач на использование законов сохранения.

Тема 3. Гидростатика. Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач динамическим способом на плавание тел.

Проверочная работа по разделу «Механика»

Раздел 5. Молекулярная физика

Тема 1.Строение и свойства газов, жидкостей и твёрдых тел. Решение задач на основные характеристики молекул на основе знаний по химии и физики. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы.

Алгоритм решения задач на определение характеристик влажности воздуха. Решение задач на определение характеристик твёрдого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Раздел 6. Основы термодинамики

Внутренняя энергия одноатомного газа. Работа и количество теплоты.

Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

Проверочная работа по Разделам МКТ и Основы термодинамики

Раздел 7. Электродинамика. Электростатика.

Тема 1. Электрическое поле. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Алгоритм решения задач: динамический и энергетический. Решение задач на описание систем конденсаторов.

Итоговая контрольная работа с элементами ЕГЭ. Анализ контрольной работы и разбор наиболее трудных задач

Планируемые результаты изучения учебного курса «Методы решения физических задач»

Личностными результатами освоения, обучающимися учебного предмета являются:

- -проявление познавательных интересов и активности в данном учебном предмете;
- -выражение желания учиться и трудиться для дальнейшего осуществления своих желаний;
- -овладение установками, нормами и правилами научной организации своей деятельности;
- -самооценка способностей для труда в различных сферах с позиции будущей социализации;
- -становление самоопределения в выбранной сфере будущей профессиональной деятельности;
- -планирование образовательной и профессиональной карьеры.

Метапредметными результатами освоения учебного предмета являются универсальные учебные действия (УУД):

- -планирование процесса познавательно-трудовой деятельности;
- -определение адекватных способов решения учебной или трудовой задачи на основе заданных алгоритмов;
- -проявление инновационного подхода к решению учебных и практических задач;
- -самостоятельная организация и выполнение различных работ;
- -приведение примеров, подбор аргументов, формирование выводов по обоснованию выбора профессии и отражение в устной или письменной форме результатов своей деятельности;
- -выявление потребностей профессии;
- -выбор для решения познавательных и коммуникативных задач различных источников информации, включая энциклопедии, словари, Интернет-ресурсы и другие базы данных;
- -согласование и координация совместной деятельности с другими ее участниками;
- -оценивание своей познавательной деятельности с точки зрения нравственных, правовых норм;
- -диагностика результатов деятельности по принятым критериям и показателям;

Предметными результатами освоения учебного предмета являются:

- -рациональное использование учебной и дополнительной информации для выбора профессии;
- -классификация видов профессий;
- -планирование деятельности по выбору профессии;
- -оценивание своих способностей и готовности к выбранной профессии;
- -допускать возможность существования у людей различных точек зрения, в том числе не совпадающих с собственной, и ориентироваться на позицию партнера в общении и взаимодействии.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

	Наименование	Количес	ство часов		Электронные	
№ п/п	разделов и тем программы	RCETO 1		Практические работы	(цифровые) образовательные ресурсы	
Разде.	л 1.ФИЗИКА И МЕТОДЫ	НАУЧН	ОГО ПОЗНАНИ	Я		
1.1	Раздел 1. Правила и приемы решения физических задач	1				
Итого	по разделу	1				
Раздел	2. Кинематика					
2.1	Равномерное движение. Средняя скорость	4				
2.2	Одномерное равнопеременное движение.					
Итого	по разделу	4				
Раздел	3. Динамика и статика					
3.1	Решение задач на основы динамики	9		1		
3.2	Движение под действием силы всемирного тяготения.		1			
3.3	Условия равновесия тел.					
Итого	по разделу	9				
Разде.	т 4. Законы сохранения					
4.1	Импульс. Закон сохранения импульса	5		1		

4.2	Работа и энергия в механике. Закон изменения и		1		
	сохранения механической энергии.				
4.3	Гидростатика.				
	Проверочная работа				
	по разделу «Механика»	1			
Итого	по разделу	6			
Раздел	5. Молекулярная физика				
	Строение и свойства				
5.1	газов, жидкостей и твёрдых тел	3			
Итого	по разделу	3			
D	(0				
Раздел	6. Основы термодинамики	4			
	Проверочная работа по Разделам МКТ и Основы термодинамики	1			
Раздел Электр	7. Электродинамика.				
7.1	Электрическое поле	4			
	Итоговая контрольная работа с элементами ЕГЭ. Анализ				
	контрольной работы и разбор наиболее трудных задач	2			
	ЕЕ КОЛИЧЕСТВО ЧАСОВ РОГРАММЕ	34	3	3	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

№		Количе	ство часов		Дата	Электронные
п/	Тема урока	Bcer o	Контрольн ые работы	Практическ ие работы	изучени я	цифровые образовательн ые ресурсы
1	Что такое физическая задача? Состав физической задачи. Классификация физических задач. Общие требования. Этапы решения задач. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.	1				
2	Прямолинейное равномерное движение. Графическое представление движения и решение задач на РД различными способами (координатный и графический). Решение задач на	1				
3	гешение задач на среднюю скорость и алгоритм. Графический способ решения задач на среднюю скорость.	1				
4	Ускорение. Равнопеременное движение: движение при разгоне и	1				

	торможении. Перемещение при равноускоренном движении.			
5	Графическое представление РУД. Графический и координатный методы решения задач на РУД. Графический способ решения задач на среднюю скорость при РУД.	1		
6	Решение задач на законы Ньютона по алгоритму.	1		
7	Координатный метод решения задач: движение тел по наклонной плоскости.	1		
8	Координатный метод решения задач: вес движущегося тела.	1		
9	Координатный метод решения задач: движение связанных тел и с блоками.	1		
10	Решение задач на законы для сил тяготения: свободное падение; движение тела, брошенного вертикально вверх.	1		
11	Движение тела, брошенного под углом к горизонту,	1		

	и движение тела, брошенного горизонтально: определение дальности, времени полета, максимальной высота подъема.			
12	Характеристики движения тел по окружности: угловая скорость, циклическая частота, центростремительно е ускорение, период и частота обращения.	1		
13	Движение в поле гравитации и решение астрономических задач. Космические скорости и их вычисление.	1		
14	Центр тяжести. Условия и виды равновесия. Момент силы. Определение центра масс и алгоритм решения задач на его нахождение. Решение задач на определение характеристик равновесия физической системы по алгоритму	1		
15	Импульс силы. Решение задач на второй закон Ньютона в	1		

	импульсной форме. Решение задач на закон сохранения импульса и реактивное движение Алгоритм решения задач на абсолютно упругий и абсолютно неупругий.			
16	Работа и мощность. КПД механизмов. Динамический и энергетический методы решение задач на определение работы и мощности.	1		
17	Потенциальная и кинетическая энергия. Решение задач на закон сохранения и превращения энергии.	1		
18	Решение задач средствами кинематики, динамики, с помощью законов сохранения.	1		
19	Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач на гидростатику с элементами статики динамическим	1		

	способом.				
20	Проверочная работа по разделу «Механика»(1 час)	1	1		
21	Решение задач на основные характеристики частиц (масса, размер, скорость). Решение задач на основное уравнение МКТ и его следствия.	1			
22	Решение задач на характеристики состояния газа в изопроцессах. Графические задачи на изопроцессы.	1			
23	Решение задач на свойство паров и характеристик влажности воздуха.	1			
24	Внутренняя энергия, работа и количество теплоты. Решение задач	1			
25	Алгоритм решения задач на уравнение теплового баланса	1			
26	Первый закон термодинамики. Адиабатный процесс. Решение количественных графических задач на вычисление работы, количества теплоты, изменение внутренней энергии.	1			
27	Тепловые	1			

	двигатели. Расчет КПД тепловых установок. Графический способ решения задач на 1 и 2 законы термодинамики.				
28	Проверочная работа на МКТ и Основные законы термодинамики.(1 час)	1	1		
29	Закон сохранения электрического заряда. Закон Кулона. Решение задач по алгоритму на сложение электрических сил с учетом закона Кулона в вакууме и в среде.	1			
30	Решение задач на принцип суперпозиции полей (напряженнос ть, потенциал). Решение задач по алгоритму на сложение полей.	1			
31	Решение задач на напряжение и напряженность энергетическим методом.	1			
32	Электроемкость плоского конденсатора. Решение задач на описание систем конденсаторов. Энергия электрического	1			

	поля.				
33	Итоговая работа с элементами ЕГЭ (1 час)	1	1		
34	Анализ работы и разбор наиболее трудных задач.	1			
	Итого	34	3		

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО
ПРОЦЕССА
ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ЛЛЯ УЧЕНИКА

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ